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Abstract 
Computer viruses are more and more numerous : around 400 in the year 1990 and this number 

is estimated to reach 1,000 for 1994-95. Users are not experts and need help in identifying the virus 
and carrying out the most appropriate cure in case of attack. 

Knowledge of viruses is necessary but public information offered by virus databases or 
catalogs gives a powerful advantage to virus makers. On the other hand, not enough or no 
information to users is also a problem because then they use the product they have which does 
not necessarily provide the appropriate solution in case of virus attack. We propose an 
alternative solution to the dilemma found in a neural network, an artificial intelligence 
connectionist model which is fault tolerant, self adaptative to learn automatically, retaining 
experience to solve the problem of virus identification regarding fuzzy information on concerns 
and effects. 

Principles of the formal neuron and the neural network using hidden nodes is examined as 
well as the theoretical and practical apects of the gradient back propagation algorithm. An 
implementation of the algorithm is applied to virus identification with data referring to virus 
concerns and their obvious effects. First results have shown a correct identification of viruses while 
using fuzzy knowledge of end users introducing uncertaincy on answers or, even, forcing 
erroneous data. Such a system can be employed by ordinary users, system or computer security 
managers, as well as consultants as a complementary tool for virus warfare. 

Further work needs to be conducted to validate methodologically such an approach and to 
optimize input data coding, the choice for parameters andthe learning strategy. 
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1. Introduction 
Computer security losses due to virus attacks are often catastrophic for a single organization 

when it cannot solve the problem very quickly. The number of viruses in the year 1990 was about 
400 : about 250 on PC, 70 on Amiga, 25 on Atari and 25 on Macintosh. Their number should be 
superior to 1000 in 1994-95 ! 

2. Knowledge, objectives and needs 
Knowledge of viruses using databases for investigation (D.. Guinier (1989b)) (i.e. dedicated 

to criminality and external expension virus studies) or classification (K. Brunnstein (1989)), virus 
description languages such as the Threat Description Language for Viruses (TDL/V) (M.G. 
Swimmer (1990)) from the VTC (Virus Test Center from Hamburg) contribute to give enough detail 
to identify possible virus attacks. Objectives and needs of different entities are : 

Objectives: 

Needs : 

Objectives: 
Needs: 

I Computer security organizations and virus emergency centers I 

To collect, centralize and manage properly information to generate knowledge. 
To offer prevention and protection measures and policy recommendations. 
To develop methods to help users in case of crisis, etc. 
All valuable information available (virus, system and organization lacks, etc.). 
Understanding virus makers (goals, motivations, education, behavior, etc.). 
Early information from users in case of virus attack, etc. 

I Normal end users I 

To use properly computer systems. 
To have an organizational virus policy for prevention and protection. 
To have knowledge about an available virus emergency center. 
To identify the virus in case of affack for choosing the most 
appropriate countermeasures without being a specialist on viruses. 
Early help from virus an emergency center. 

Objectives: 
Needs : 

I Virus makers I 

To produce an efficient virus (e.g. difficult to detect, giving significant damage). 
Maximum information on virus, worms, etc. 
Early information on systems and procedure lacks. 
Knowledge about organizational deficiencies 
To infiltrate virus emergency centers, virus research labs, organizations, etc. 

3. Proposal for an alternative solution to the dilemma 
Giving too much information on viruses can offer a powerful advantage to virus makers but, 

in the other hand, not enough information to users is also a problem. There is evidence of a 
bottleneck of unclassified information on viruses and a di lemma of the general necessity of 
academic knowledge for men and the general need of protection against agressive agents : 
viruses and their makers. Our purpose is to solve the dilemma by introduction of an alternative 
solution which can provide sufficient information to identify the virus and to help any normal user 
with appropriate countermeasures. 
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Fig 1 : A possible model for distributed knowledge regarding the different objectives. 

Usually computer  virus strategies use e m e r g e n c y  procedures in case of virus invasion after 
identification of the virus. Virus warfare directly conduc ted  without identif ication with anti-virus 
products can be more or less well adapted,  depending on the virus. 

Identif ication by fingerprinting does not work every t ime and not at all for a new virus. It is 
necessary to have a system able to investigate with fuzzy, incomplete or even erronous data. 
Such a method should work as a tolerent system and for new viruses having some similarity (i.e. a 
c l o n e )  with an older one. It must be easy to employ and at no risk for the user to inform a virus 
center which will possess information on virus erradication and cure. Also, the solution will be to use 
a fuzzy logic based system. 

4. The use of a connectionist model of AI 

Artificial intell igence should help and there are two  possible approaches : the symbol ic  or 
the connect ionist  models. The first is rationalist rule-based and will be successful for clear goals 
and rules. The second is empiriscist brain decision based on and better in case of uncertaincy. 
We have been at t racted by neural networks, corresponding to connectionist models. 

Brain is fault tolerant. Even in case of neuron losses, it continues its function with the same 
level of eff iciency by compensat ion, and even in case of massive incapaci tat ion,  the loss of the 
per formance is partial and does not tend to a catastrophe. It is self adap ta t i ve  by learning 
automatical ly wi thout the need for new algorithms, because it synthesizes pattern classifications 
from its experience and is a good patlern marcher to perform perceptual informal problems. 
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Also, neural networks have their advantage in that they simulate the human brain and can 
easily solve a problem, especially in case of classification, diagnostic or help for decision-making 
and when it is not needed to explain why but when it just required to make a choice based on 
experience after learning. 

4.1. From biological neuron to formal neuron 

Nerve cells, also called neurons, are the structural and functional units of the nervous system. 
They are basical ly also the main e lements of the cent ra l  nervous system. There are 
approximately  100 billions of such cells in the human brain. Each is consti tuted of dendrites, a 
cellular body and an axon, The function of a neuron is to receive, to integrate signals coming from 
other neurons and in turn to transmit the nervous influx to the next. 

The dendrites have as a role to capture influx signals. They ore the passive parts of the nerve 
cell. The cellular body with its nucleus in the middle can be considered as the biochemical center. 
The axon is a nervous fiber used for transportation of the signal from one neuron to the next, it is the 
electrically active part of the nerve cell. Finally, connections of neurons are mode at particular 
places cal led synaps, 

A neuron makes the sum of electrical influxes coming from its neighbourhood and reacts 
with an electrical current transported by the axon when the sum of input signals is superior to a 
given threshold. At this moment ,  it is said to be an active neuron. A representation of such a 
biological neuron can be modetized in the form of the formal neuron. The behavior of the neuron 
will be described by inputs, weight  parameters, some functions (input, activation and output 
functions) and finally, outputs. 

dendrites 

7 

axon 

Inputs i 
weights w i 

Activation function 

f ( I ) = l / ( l + e "  I) 

I 

i ut function Output function : 

F ~ l /  I=~., w i i i -b  O=fo (f(I)) i=l,n 

Output 0 

Biological neuron Forma l  n e u r o n  

Fig 2 : Biological and formalized neurons 

4.2. Modelisation of a neuron :the formal neuron 

Input node content depends on the nature of the inputs. It can be binary or analog. The total 
input function fi 0 defines a treatment appl ied to the inputs. The activation function f (I) determines 
the internal state of the neuron in relationship to its total input function I. The output function fo 0 
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computes the output of the neuron ( J.L. McClelland. D.E. Rumelhart (1987)). 

4.3. Hidden node multi-layer neural networks 
In the brain, there is a considerable number of connections (nodes) between the neurons 

and the cerebral cortex is divided into numerous layers themselves with many connections. 
These layers are linked with others to form a complex network. Considering the formal neurons. 
total connections are possible, but it is considered local step by step connections to form which is 
called a multi-layer neural network. In this case, nodes from the same layer are non 
interconnected, each layer treats the signals from the previous and transmits the final results to the 
next, and so on. The middle layers and associated nodes are called hidden. 

Weighted parameters (w) are used to give more or less importance to each connection 
and to represent connection strengths, playing the role of inhibitor or excitator corresponding to 
the biological synaps. The connections are dynamical because of the evolution in the value of 
the weights. This is the learning process which can be mathematically considered as a transfer 
function for which it is necessary to have an implementation in the form of an algorithm. 

Data input X .~, 

Input layer 

Hidden nodes Hidden layers 

Node des 

~ ['~--~ r ~ ]  ,,,,,,,,,, ~ 1  / Outputlayer 

Learning process only 

Fig. 3 : Hidden multi-layer neural network architecture 

4.4. The gradient back propagation algorithm 
Such an algorithm has been described by D.E. Rumelhart, G.E. Hinton, R.J. Williams (1986) 

under the name gradient back propagation algorithm (GBP algorithm). The signal crosses several 
connections and is non linearily transformed and presents a measurable error at the output layer. 
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The goa l  of the  a lgor i thm is to  d is t r ibute this error at  e a c h  node .  This is possible if w e  c a n  
p r o p a g a t e  the signal from the input to the ou tpu t  as well  as to r e t r op ropoga te  the signal from the 
ou tpu t  to  the input layer. C o m p u t a t i o n  of the g rad ien t  in the learning process begins at  the last 
layer a n d  progresses layer af ter  layer in the oppos i te  d i rect ion of the outputs.  Hence  the n a m e  : 
back propagation. 

The error signal following the inverse path of the intput signals in the network is measured 
directly from the output neurons by the weighted sums from the following layer for the other 
neurons. It is a local algorithm with a minimum of overall control due to learning computations 
realized independently at the level of each neuron. The procedure allows the possibility of 
parallelization for such an algorithm with respect of the biological plausibility. 

4.5. Learning process with GBP 
The neural net 'work (or the humain brain) must be  t ra ined by exposure to a large set of cases 

wh ich  consist of de f ined  input character is t ics  c o u p l e d  with their co r respond ing  output ,  During the 
learning, it is necessary to submit a sample of input data X and their corresponding known output 
Y. From each input, the neural network computes from near to near an output result 0 using the 
actual values of the weight parameters. Then, the error .6 represented by the the quadratic sum of 
the errors obtained for each output node is then back propagated in the network to modify each 
weight (w). This process is repeated up to a submitted error threshold. Finally, learning consists of 
minimizing the quadratic error A which is a function of the weight parameters using a gradient 
descent. The activation function will be chosen as a derivable function in sigmoi'dic form. 

The GBP a lgo r i t hm offers a progress ive  s e l f - a d a p t a t i v e  a n s w e r  to  the  i n p u t - o u t p u t  
assoc ia t ion  pat terns,  Several s t rategies are possible. Patterns c a n  be  c h o s e n  sequent ia l l y  or 
randomized  or the learning process c a n  be d o n e  using just one  part  of the list to reduce  learning 
time. Some pat terns cou ld  also be  d u p l i c a t e d  and  d isposed of at d i f ferent p laces  in the learning 
list to force their inf luence. 

Data input vector X = { Xl, x2, x3 ..... Xn } 
Data output vector Y = { yl, y2, y3 ..... ym } 
Output result O = { Ol, 02, 03 ..... am } 

The quadratic error is ( yi - oi ) 2 

The total error for all the s stages from the samples is A = ~.,s A s = ~t--1,s ,~t 

where A t represents the error on the t th example A t = ( yt. 0 t ) 2 = ~i=1, m ( Yi- oi) 2 

Gradient for the output layer 

Gradient for the hidden layers 

Weight modification rule for each stage s is 

aj : 2.f '(ii).(oi-yi) 

ai = % h ah .Whi.f '(ii) 

wij (S) : wij (S-l)- g(s).Nj.aj { 

f (it) = 1 / (1 + exp (-it)) a sigmoidic function 
f '  (it) = derivative of the function • f (it) 
Nj is the output value for neuron j 

ii = ,....,jj wij.Nj is the intput value for neuron i 
g(s) is the step of the gradient at stage s 
h considers the neurons which have a connection from 

. . .  l l . ~n r  r ~  

4.6. Hidden nodes, learning rate and momentum 

The learning t ime necessary  has b e e n  demons t ra ted  by M. Minsky a n d  S. Paper t  (1969) to  
fo l low an exponen t i a l  l aw of t he  complex i t y .  But a measure  of comp lex i t y  has not  b e e n  
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established for the moment. The convergence of the algorithm has not been proven and the 
working efficiency depends on the adjustment of some parameters under real working conditions. 

Tlne number of hidden nodes in the input and in the output layers are well specified by the 
problem to be solved under user guidance to choose these characteristics, but the number of 
hidden nodes in the middle cannot be clearly defined. It has been shown that the number of 
middle layers improves the quality of learning to a point but is time costly. There is no formal law to 
determine the odequation between learning improvement and learning time. However, if only a 
few hidden nodes are in use, the network may not be able to formulate good answers. 

Tlne learning rate is the constant of proportionality. It regulates the weight changes as a 
function of the error. The larger the learning rate, the larger the weight changes, and also the faster 
the learning ! The learning threshold is the parameter set to stop the learning process when the 
error falls below the value given by the user. 

Sometimes, the error surface contains a long and smooth descent in space and it is 
necessary to increase the value of the change along the direction of the gradient or else large 
learning leads to an oscillation in the weight changes. The process never completes and tends to 
a chaotic situation. There is one solution however which allows to change weight as a function of a 
previous change and to provide a smoothing effect. This allows a faster learning without an 
oscillation. The momentum factor gives this possibility setting the proportion of the last weight 
change to add to the new change : 

New weight change = { Last weight change }.{ Momentum }+{ Learning rate }.{ Error function } I 

5. A GBP neural network implementation 

5.1. Choice for a neural network program 
Rather than develop a complete new system, we have fixed our choice on an existing and 

commercially available package. The system has to apply to a specific but real problem and 
get an adapted solution. The program has to build a neural network of sufficient size to solve the 
problem in terms of experience and if possible, to offer a hardware solution to reduce the learning 
time process. After computing the weights, the software has to give the possibility to integrate 
them automatically in a run time source code. This last run time functionality makes the 
development easier. 

Several packages are presenting available fulfilling these preliminary conditions. We turn 
our choice to Neuroshell (release 4,0) from Ward Systems Group, Inc. as an economical product 
to implement on a PC and because they offer NeuroBoard as a potential hardware solution. 

5.2. Virus identification modules 
Identification modules consist of three programs : the extraction program, the learning 

program (NeuroShell) and the virus identification program. 

The extraction program is in charge of the input data generation for the learning 
process. The questions file for operational process of identification, and the file 
for virus names, countermeasures and general virus information. 

The learning program (NeuroShell) is furnished by Ward Systems Group, Inc. 
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and is in charge of the learning process to generate the parameters 
implemented in the identification program. 

The virus identification program seeks answers to oriented questions, tt is 
interruptible and restartable, saving the results of questions on a file. Answers can 
be "Yes" (coded 1.0), "Perhaps" or "Not sure" (coded 0.5) and "No" (coded 0.0). 
It gives pointer for corresponding virus name, countermeasures and general 
information on virus in extracted virus names and measures file. 

S ro e ic r 
information ~ 

Extraction 
program 

Virus names 
and to 

Measures 

O p e r a t i o n a l ~  
information 'I' 

I Virus 
~ 8  ~©'~@~ identification • ~ p r o g r a m  

Results 

Computer security organizations 
Virus emergency centers 
Virus research centers, etc. 

NeuroShell 

Learning 

_ " 

Questions I .Data fo r 
I the learning. I Coeffi.oients I 

RunTime 

Part of source 
program 

I Completed 
Runabte 
program 

I ompilation 

I Linkage 

Fig. 4 : Transforming strategic to operational information and satisfying the needs of end users 

5.3. Data coding 
The Threat Description Language for Viruses (TDL/V) (M.G. Swimmer (1990)) from the CVC 

(Computer Virus Catalog) from VTC (Virus Test Center (Hamburg)) is sufficient in itself to provide 
an easy coding of the input for a neural ne'twork. 

Input data considers the obvious viral effects and concerns, coding is made by a 
combination of the strict information contained in the CVC and regarding the potentiality of 
answers made by novice users, Output data is the presence or not of the virus (a single 1.0 and 
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others 0.0). 

Virus characteristics Virus attributes 

Virus type 
File infected 
System infecled 
Computer model 
Version release 
Message on screen 
Message conlains in virus 
Sound effects 
Size change 
Existence of associated file 
Damage 
Trigger 
Date 
Special 

{ program virus, boot sector virus, RAM memory resident } 
{.COM, .EXE, both, .E*, COMMAND.COM, etc. } 
{MS-DOS, MacOS, Amiga-DOS, Atari-TOS, UNIX, VMS, etc. } 
{RaM BIaS version} 
{Version x.x} 
{ your PC is stoned, Merry Christmas, Apnl April, etc.} 
{ @aids, today is Sunday, IBMBIO.COM, Access denied, etc.} 
{ beeps before message, Oh Tannenbaum melody, etc.} 
{ cam +1704 O, exe + 1618 -1634 O, command.cam + 555 O, etc.} 
{ hidden file c:\ bugs.dot, hidden file \ibmnetio.sys, etc. } 
{hang, numlock on, slow down, destroy file on Friday 13th, etc.} 
{infection trigger, damage trigger} 
{date change, seconds are put at 62} 
{ read only files are lost, .CaM >64 KO unrunoble, etc.}, etc. 

5.4. Learning process 
At each step, the learning process is under control of the error distribution histogram to follow 

the quality and the velocity and to adjust the values of the learning parameters at any time. The 
program has been run on an AT-386 at 20 MHz. As on example : 

Parameters adjustments for a learning process involving 210 Inputs and 5,4 outputs 
Hidden nodes 
Learning rate 
Learning time 
Error distribution 

32 Learning threshold 0.0001 
0.6 Momen~m 0.9 
8 hours 

92.6% 0.0051 to 0.01 (50) 
3.7% 0.0001 to 0.005 ( 2 )  
3.7% 0.0000 to 0.0001 ( 2 )  

A contribution factor is also used to give a rough measure of the importance of each input 
data relative to the others, and finally suggest to maintain or remove such a data to simplify the 
network and by consequence to permit a faster convergence to the network. The contribution 
factor is the sum of the unsigned values of the weights playing a leading part from a given input 
data. 

The NeuroBoard should permit to run the learning process about 100 times faster than when 
using a single software solution on an AT-386 machine at 20 MHz equipped with a 80387 arithmetic 
coprocessor. That is less than 5 minutes comparing to 8 hours ! This permits to gain more 
experience on the neural network behavior in relationship with the parameters (learning rate, 
momentum, number of hidden nodes .... ) on a single set or to try to test results regarding the 
possibility of using subsets of input data. 

6. Operational process and results 
During the learning process 210 inputs corresponding to characteristics and attributes taken 

from the Computer Virus Catalog from the VTC (K. Brunnstein (1989), M.G.Swimmer (1990)) are 
coded {0.0, 1.0}.They correspond exactly to the 54 different outputs, that is the experimental 
sample used. The total sample should be around 500 (the actual total number of virus). During the 
operational process the 210 inputs are coded {0.0, 0.5, 1.0} by the program in relationship with the 
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questions and the answers furnished by the user. Results are offered in the form of the name of the 
three most probable viruses and their associated curative measures. 

I Input I 

Result,s i 

Questions asked to the user relative to different characteristics of the virus 
Answers are coded by the virus identification program 

ex." Question" 
Answer • 

Do you have change for program size (Yes, ?, No). 
Yes (Virus identification program coding is • 1.0) 

Virus name and alias 
Countermesures 
General information 

{syslock, swap,fumanchu, marijuana, cascade, zero bug, etc.} 
{measures and standard means to apply to eliminate virus} 
{Lacation, classification and documentation authors, date} 

7. System validation and further work 
Forcing unknown answers or ambiguTty by the way of a novice user or possible input errors, 

random or voluntary errors give correct answer up to 25% of wrong or indecidable answers on this 
sample of 54 different viruses. Experimentation needs to be clone on the full catalog. Various 
optimizations in the questions as well as in neural networking, data coding, parameter choice, 
operating system virus compartmentation, etc. will probably increase the power of the neural 
network answer as well as the conviviality of the answers. 

8. Conclusion and perspectives 
Such a system can be considered as a complementary tool for the virus warfare. It is 

dedicated to different users : ordinary users, system or computer security managers as well as 
consultants. For virus makers, information obtained has a reduced effect on their knowledge.Data 
refer to virus concerns and their obvious effects. Also, in case of a new virus, the results furnished 
by the neural network are in relationship with similarities with o known virus, 

'The changing nature of viruses, men and environment is well adapted to neural networks. It 
should be interesting to consider this technique inside the new generation of behavioral real time 
intrusion detection systems to monitor systems, men, environment and interactions in terms of 
behavior rather than isolated single facts and classification using segregation by value (Guinier D. 
(1991)). 
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